

breglobal

Fire Spread - The Issues Dr Sarah Colwell Principle Consultant

- 160 million buildings use over 40% of Europe's Energy
- Produce over 40% of Europe's Carbon Dioxide Emissions

- EU responded with Energy Performance of Buildings Directive requiring
 - A methodology to calculate integrated energy performance of buildings
 - Minimum energy requirements for new buildings
 - Minimum energy requirements for large existing buildings being renovated
 - Energy certification of buildings
 - Regular inspection of boilers and air conditioning

- Driving changes in construction sector
 - Facing challenges
 - Low environmental impact materials
 - Skills shortages resulting for a period of de-skilling (lack of apprenticeships / training schemes for craftsmen)
 - Quality issues (lack of knowledge / training)
 - Speed/efficiency of construction (build it faster, leaner)

- Driving changes in construction sector
 - Potential impacts on
 - Fire performance
 - Life safety
 - Property protection

Meeting the Challenges -Sustainability

- Increased use of recycled materials (e.g. mobiles, tyres, pallets, bottles)
- Construction site waste reduction leading to development of better/innovative construction methods/techniques – Modern Methods of Construction (MMC)
- Novel design and use of materials
- Increased thicknesses of insulation to improve energy efficiency

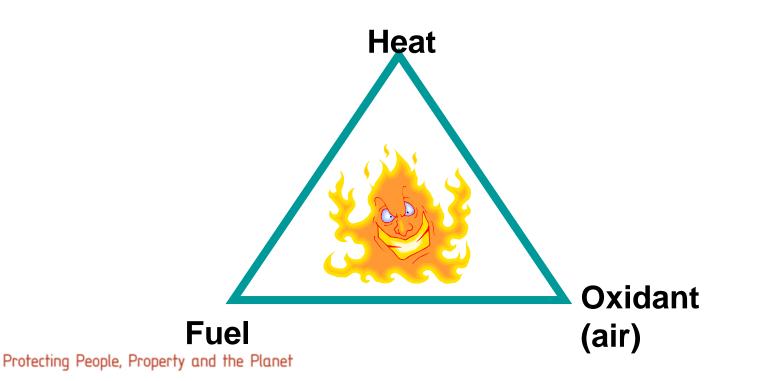
breglo

Meeting the Challenges -Sustainability

- The impact of fires on the environment
 - Generation of carbon dioxide, toxic species
 - Pollution of water courses
 - Business interruption
 - Property damage
 - Societal local community

Fire spread – Timber Frame Issues

- Fire spread 2 separate issues:
 - Fire spread during construction
 - Fire spread post completion i.e. during occupancy



Fires during construction – issues arising

- Type of construction
 - frame / panellised
- Material of construction
 - timber / timber + other materials
- Cross section of structural components

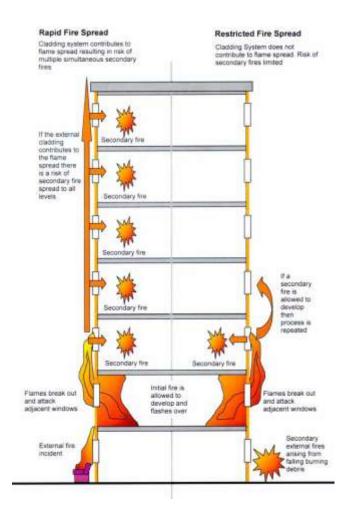
Fires during construction – issues arising

- Ignition sources
- Sustained fire propagation

breglobal

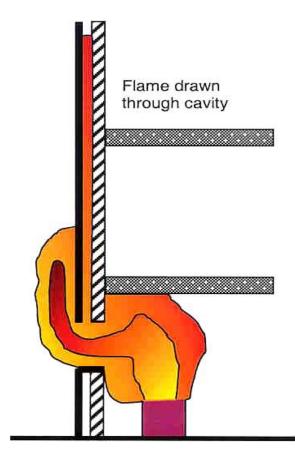
Fires during construction – issues arising

- Speed of fire spread and extent of spread
 - impact on operational fire fighting
- Damage to adjacent buildings
 - level of radiated heat
- Partial occupation of buildings
 - responsible authority (HSE/Fire Service/Building Regs)
- Arson often a factor

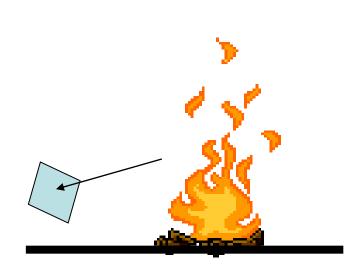

Fire Spread & Design Calculations

- Radiation calculations
- Flame shapes/heights
- Flame thicknesses
- Separation distances Calculations founded on same fundamental understanding of heat transfer as BR 187
- Easy to validate based on real data i.e. forensic recreation
- Effects such as wind unknown
- Real expertise is needed to predict what will happen

External Fire Spread


- Fires allowed to develop may flash over and break out through windows.
- Flames spread up over or through the cladding.
- Flames can extend over 2m above window opening. Regardless of cladding materials.
- If fire re-enters building secondary fires may then develop

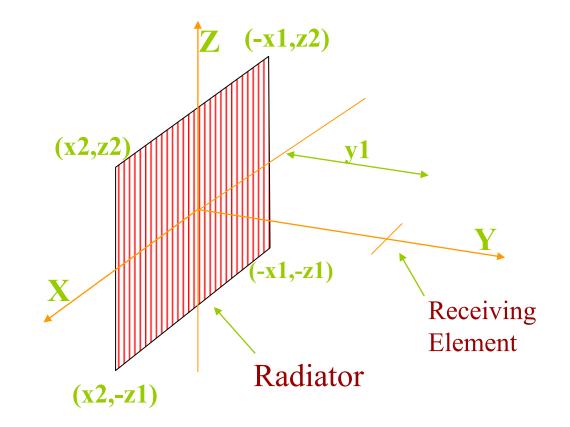
breglobal


Mechanisms of External Fire Spread

- Combustible materials
- Cavities either
 - Part of system.
 - Created by delamination.
- Flames can extend 5 to ten times original length regardless of materials present.

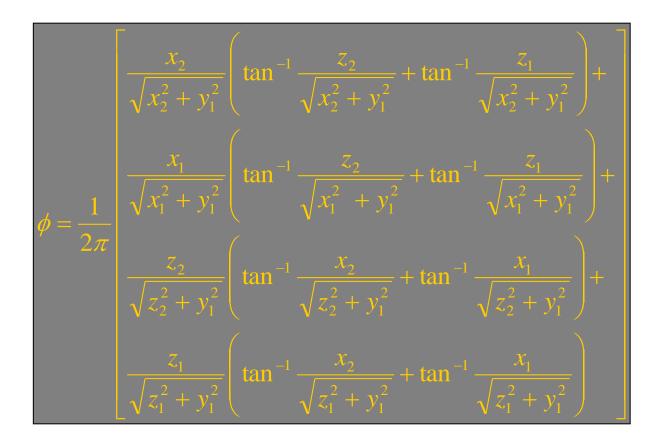
Radiation from flames

Calculation of heat flux



- σ = Stefan-Boltzman constant, 5.67x10⁻⁸ W/m²/K⁴
- ϕ = View factor (0.0-1.0)
- $\varepsilon = \text{Emissivity} (0.0-1.0)$
- T = Flame temperature (K)

breglobal



Rectangle to parallel receiver

View Factor

Values are tabulated in:

Fire Research Technical Paper 2

Simplified Approximations

- For building separation calculations are available in BR187
- SFPE Handbook of fire protection engineering

Emissivity

Quantifies the "transparency" of the flame

$$\varepsilon = 1 - \exp\left(-k\lambda_f\right)$$

k = effective emission coefficient (m⁻¹)

 λ_{f} = thickness of the flame (m)

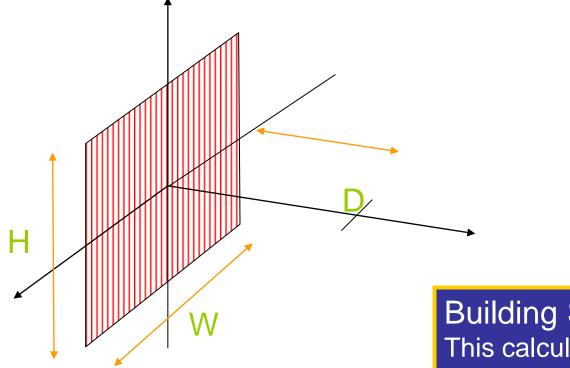
For flame thicknesses greater than 1m then it is common to assume emissivity = 1.0

breglo

Flame temperature

- BR187
 - High fire load (>25kg/m²)
 - Low fire load (<25kg/m²)

 $T = 1100^{\circ} C$ $T = 800^{\circ} C$

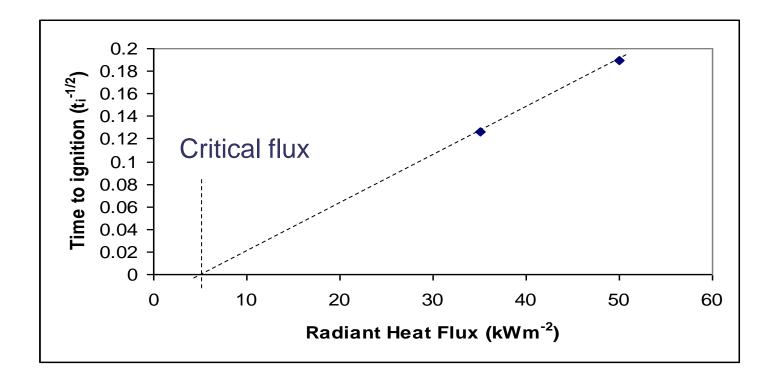

Temperature('C)	colour
550	Red glow
700	Dull red
900	Cherry red
1100	Orange
1400	White

From Drysdale

Heat flux from a hot surface

Specify size of surface, temperature and emissivity

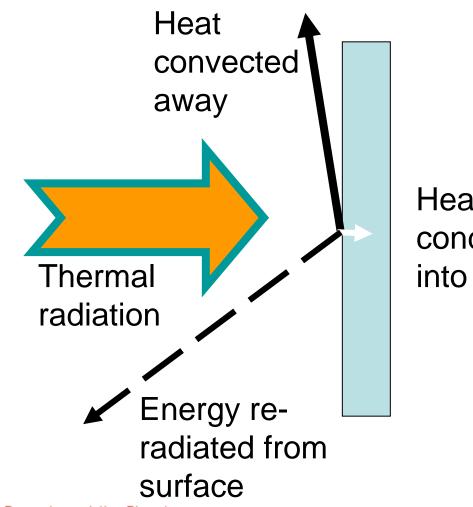
Building Separation: This calculates <u>separation distance</u> not <u>boundary distance</u>


Effects of thermal radiation

Heat flux (kWm ⁻²)	Effect	Source
0.6	Summer sunshine (UK)	1
10.5	Pain after 3s	1
12.6	Pilot ignition of wood	1
42.0	Ignition of cotton fabric(5s)	1
52.5	Ignition of fibre board (10s)	1
54.6	Ignition of oak (10s)	1
21	Ignition of PMMA (pilot)	2
16	Ignition of Flexible PUF (pilot)	2

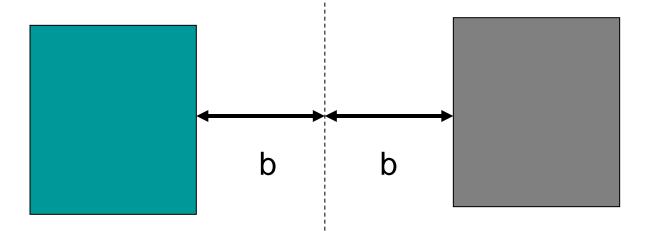
breglobal

- 1. 'Fire and the Atomic Bomb' (HMSO 1954)
- 2. 'Fire dynamics' Drysdale


Critical flux for ignition

 Plotting (1/time to ignition)^{1/2} against heat flux shows a value below which ignition does not occur

Heating of objects by thermal radiation

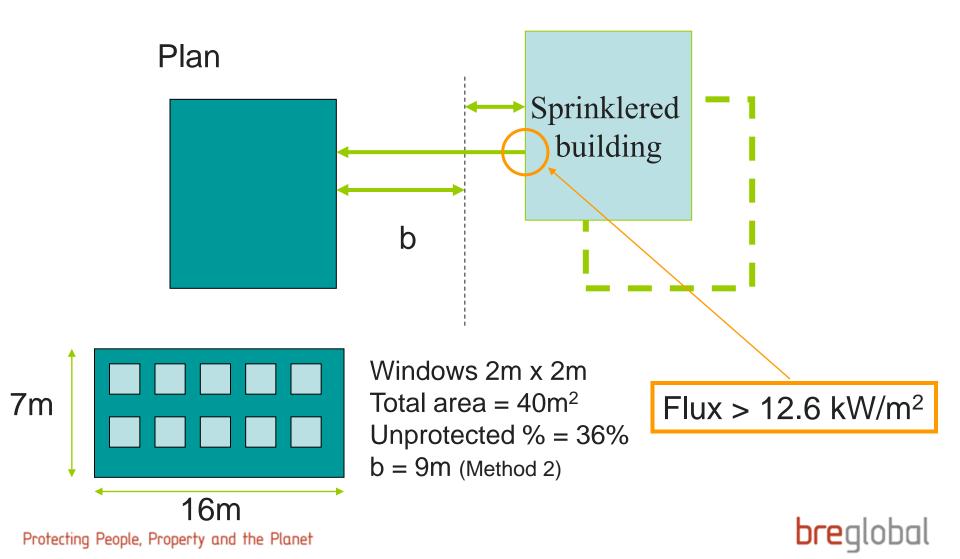


Heat conducted into solid

Building Separation – Technical Standards

Assumes buildings each side of boundary are identical

- Tables give distance to **BOUNDARY** (b)
- Calculations give distance between BUILDINGS (2b)



Building Separation - Guidance

- Boundary distance depends on:
 - Compartmentation
 - Unprotected areas (e.g. windows)
 - Purpose group (fire load, compartment temperature)
 - Installation of sprinklers (halve boundary distance)
- Technical Standard has "simple tables" for small buildings in some purpose groups, other methods are given in BR187
- More complex designs require expert analysis

Building Separation

FIRE SPREAD POST COMPLETION

Common mode of failure

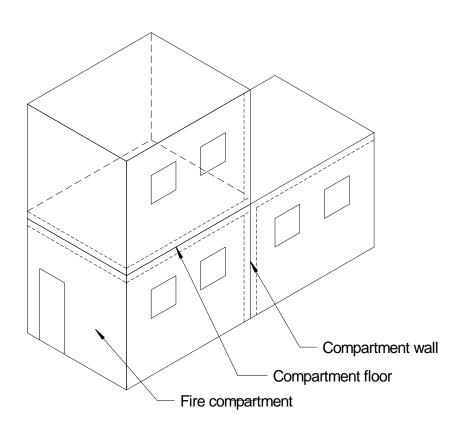
- Cavity fires
 - Common to all Modern construction
 methods
 - Occurs in combustible cavities
 - Cavity barriers and compartmentation not adequate

Case Study - Apartment building, London

- Small fire in patio area external wall construction failed to provide adequate resistance to the passage of smoke between apartments and floors.
- Amount of damage out of proportion to the size of the incident

Building regulations compliance or third party certification ?

- Fire testing
 - Snap shot of product performance
 - Relates to performance of product as supplied by manufacturer
 - Test report issued
 - Manufacturer's responsibility
- Third party certification or approval is different


What is Approval?

- Independent third party confirmation that a product or Service complies and continues to comply with a specific standard through:
 - independent assessment of manufacturing facility and/or processes
 - independent and competent testing/assessment
 - independent review of test results against a technical standard
 - ongoing surveillance of production and assessment of management system
 - ongoing audit sampling and testing

LPS 1501 - Standard for fire performance assessment of MMC

 Assessment for fire performance against LPS 1501

breglobal

[www.redbooklive.com]

LPS 1501

 The standard incorporates a large scale fire test to investigate system performance in relation to structural behaviour and fire spread between units including the performance of fire stopping and cavity barriers

Why test at full scale?

- Relationship between performance in real fires and performance derived from standard fire tests (thermal and structural response)
- Importance of workmanship issues
- Importance of detailing
- Cavity barriers and fire stopping
- Impact of thermal insulation requirements (creation of unstopped cavities)
- Alternative load carrying mechanisms and alternative modes of failure

breglobal

Why test innovative building systems at full scale?

- No historical database available to assess performance
- Previous experience with system built housing
- Possibility of systematic faults
- Use of new materials (in particular increasing use of highly insulating combustible materials)
- Housing systems designed for purpose to limit state principals – levels of safety unknown
- Possibility of disproportionate damage

Installation

- Best product in the world can perform poorly in a fire if not installed properly
- Concerns have led to development of installers schemes for (often driven by manufacturers with approved products);
 - Suppression systems (sprinklers, gaseous)
 - Detection systems
 - Passive fire protection systems e.g. LPS 1531 for installers of LPCB approved products (to LPS 1181 and LPS 1208 (fire resistance/compartmentation))

Proposition

bretrust

- BRE Trust (the charity that owns BRE Group and invests funds in research) is prepared to contribute funding towards a project to carry out research to identify the real issues associated with timber-frame during construction fires AND fires in post occupancy buildings
- Project will enable robust assessment of proposed mitigation measures.
- BRE Trust is looking for stakeholder partners to collaborate in this project by contributing cash and contributions in kind

Summary

- Climate change issues driving changes in the construction sector
- These changes are challenging our regulatory test methods developed for traditional construction products and methods
- Material and component testing of products is not necessarily adequate for controlling the hazards
- System test methods are in development for providing data relevant to end use
- Third party certification is being used to fill this gap and improve market confidence
- Costs for the manufacturer/producer so must be relevant and justifiable

Summary

- The importance of installation is becoming more widely recognised and understood
- Approved installers are being required by major contractors
- Traceability of MMC in dwellings is recognised as important but requires engagement/commitment of Key Stakeholders
- The BRE Trust is commissioning BRE Global to carry out much needed research other partners are being sought

Thank you

Enquiries:

Sarah Colwell

BRE Global

colwells@bre.co.uk

www.bre.co.uk & www.redbooklive.com